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Abstract 

Computer-aided drug design has become an integral part of drug discovery and development 

in the pharmaceutical and biotechnology industry, and is nowadays extensively used in the 

lead identification and lead optimization phases. The Drug Design Data Resource (D3R) 

organizes challenges against blinded experimental data to prospectively test computational 

methodologies as an opportunity for improved methods and algorithms to emerge. We 

participated in Grand Challenge 2 to predict the crystallographic poses of 36 Farnesoid X 

Receptor (FXR)-bound ligands and the relative binding affinities for two designated subsets 

of 18 and 15 FXR-bound ligands. Here, we present our methodology for pose and affinity 

predictions and its evaluation after the release of the experimental data. For predicting the 

crystallographic poses, we used docking and physics-based pose prediction methods guided 

by the binding poses of native ligands. For FXR ligands with known chemotypes in the PDB, 

we accurately predicted their binding modes, while for those with unknown chemotypes the 

predictions were more challenging. Our group ranked #1st (based on the median RMSD) out 

of 46 groups, which submitted complete entries for the binding pose prediction challenge. For 

the relative binding affinity prediction challenge, we performed Free Energy Perturbation 

(FEP) calculations coupled with Molecular Dynamics (MD) simulations. FEP/MD 

calculations displayed a high success rate in identifying compounds with better or worse 

binding affinity than the reference (parent) compound. Our studies suggest that when ligands 

with chemical precedent are available in the literature, binding pose predictions using 

docking and physics-based methods are reliable; however, predictions are challenging for 

ligands with completely unknown chemotypes. We also show that FEP/MD calculations hold 

predictive value and can nowadays be used in a high throughput mode in a lead optimization 

project provided that crystal structures of sufficiently high quality are available. 
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1. Introduction 

Rational drug design using computational techniques is becoming an essential tool in 

assisting fast and cost-efficient lead discovery and optimization, due to the fact that it utilizes 

the information of the three-dimensional structure of the biological target in the process 

(structure-based drug design) and/or the activity of known binders to the target of interest 

(ligand-based drug design). The Drug Design Data Resource (D3R) is a community, which 

collects protein-ligand datasets and organizes international blinded prediction challenges 

using these resources. As in D3R Grand challenge 2015, this year’s D3R challenge provided 

blinded datasets, which contain binding affinities of multiple ligands against a target protein 

and co-crystal structures. The aim of these challenges is to provide a solid ground for 

developers and end-users to identify limitations of the contemporary computational methods 

and opportunities for improvements.  

In the lead identification phase, initially one maps the key interactions between ligands and 

the protein binding site, predicts their binding poses in the protein, and evaluates the 

energetics of the resulting complexes. The most commonly used methodology is docking and 

scoring for virtual screening. It is commonly accepted that while docking usually outputs a 

good estimate of the binding pose, scoring functions usually fail to correctly rank different 

compounds with an increasing difficulty in congeneric series [1, 2]. Hence, identifying the 

top-ranked pose as the right binding pose, is still a challenge [3]. This is also reflected to the 

results of the predictions during D3R Grand Challenge 2015 [4-6]. On the contrary, cross-

docking or ensemble docking, i.e. docking of ligands into multiple receptors or 

conformations of the same receptor, has been proven valuable in the past, by giving more 

accurate predictions than docking in a single protein conformation [7-9]. 

The lead optimization phase is currently one of the most costly phases in pharmaceutical 

development. According to Paul et al [10], lead optimization accounts for a total of $414 

million per approved drug. The process of delivering optimized leads of higher affinity than 

the parent compound and providing coherent structure-activity relationships that can 

efficiently guide synthetic efforts can now be both time- and cost-efficient using reliable 

computational methods to calculate protein−ligand binding affinities. Recent advances in 

computational methods (e.g., more accurate force fields and sampling algorithms) and the 

emergence of GPU coding are advancing drug discovery lead optimization efforts from 

approximate to rigorous methods. A rigorous method for calculating relative protein−ligand 
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binding affinities is the Free Energy Perturbation (FEP) framework, which is currently the 

most accurate qualitative link between experimental and computational studies, [11] when 

using sufficiently small mutations and an adequate sampling. Janssen, Bayer, and Pfizer 

recently published in 2016 several prospective applications of relative binding affinity free 

energy calculations, which are now becoming accessible to the lead optimization stage of the 

drug discovery process [12-15]. 

Accurate methodologies to estimate the structure of a protein-ligand complex and the binding 

free energy of a small molecule to a receptor could lead to the fast and efficient development 

of novel, potent protein modulators. Current methodologies have many limitations and 

usually their applicability is limited. The blind evaluation of these methods, by using datasets 

of structure-related activity of co-crystalized ligands is of a great importance. Such 

evaluations promote the application of these methods without the use of any bias in their 

setup such that the results are a true indicator of their limitations and possible pitfalls. This 

process can further indicate new areas of investigation for the improvement of these methods. 

Here, we present the results of the evaluation of binding pose and relative binding affinities 

predictions using a dataset of co-crystallized Farnesoid X Receptor (FXR) agonists provided 

by the D3R for the Grand Challenge 2 competition. D3R provided participants with the 

structures of 102 compounds and requested the prediction of the crystallographic poses for 36 

of them. In addition, the prediction of affinities or affinity rankings, for all the 102 ligands, 

and for the relative binding affinities for two subsets of 18 and 15 compounds were also 

requested. The dataset of FXR agonists consisted of previously-characterized isoxazole and 

benzimidazole analogs, two new novel classes of FXR agonists, including sulfonamide and 

spirocyclic derivatives, and six miscellaneous compounds. We participated in the binding 

pose and relative binding affinities predictions, but not in the affinities ranking prediction as 

scoring still suffers from major limitations proven by the low correlation between docking 

scores and experimental affinities [3].  

For the binding pose predictions, we used a combination of docking, and physics-based 

methodologies such as FEP calculations, metadynamics, and prediction of water occupancy, 

taking into account all 28 available FXR crystal structures [16-28]. These methods 

demonstrated excellent results in predicting the crystallographic pose of ligands with known 

chemotypes in the literature (e.g. benzimidazoles), which have solved crystal structures, and 

it showed some success in predicting the binding modes of those ligands in the dataset with 

new scaffolds (e.g., sulfonamides). 
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For the free energy predictions, we employed alchemical free energy methods. Calculating 

the absolute binding free energy of a ligand binding to a receptor would be a direct way to 

evaluate the biological activity of inhibitors/agonists and reduce the time and resources cost 

required for the development of a drug, by synthesizing only the potent ones. Unfortunately, 

such calculations are computationally intractable due to the fact that thermal quantities such 

as entropy cannot be measured directly in a simulation. As a workaround, alchemical free 

energy methods have been developed and progressed rapidly over the last two decades [29-

37]. Here, we present our methodology used for predicting relative binding affinities of 

ligands bound to proteins. Based on our results, applying FEP calculations has a high success 

rate in predicting molecules likely to bind with higher affinity than the parent compound as 

well as compounds binding more weakly than the parent compound, thus saving valuable 

resources in a lead optimization project.  

 

2. Methods 

2.1 Test datasets and timeline of the challenge 

The blinded unpublished dataset, courtesy of Roche Pharmaceuticals and curated by D3R, 

contained 36 high quality crystal structures of the FXR target and binding data (IC50s) for 102 

compounds. The challenge consisted of two stages. In Stage 1, participants were provided a 

dataset with the FXR apo-protein, SMILES strings and SD files of the 36 ligands for pose 

prediction, and 66 ligands for affinity prediction or ranking. SMILES strings and SD files of 

two subsets (18 sulfonamides and 15 spirocyclic compounds) were also provided for the 

calculation of relative binding affinities. In Stage 1, participants were asked to predict the 

crystallographic poses of the 36 ligands, affinities or affinity rankings for all 102 ligands, and 

the relative binding affinities for the two designated free energy subsets. The participants 

could perform any combination of these tasks. Stage 1 opened on 18th September and closed 

on 22nd November 2016, followed by the released of the crystallographic poses of the 36 

ligands and the beginning of Stage 2. In Stage 2, participants were provided with the actual 

crystal structures and were asked to predict the affinities, or affinity rankings, of all 102 

ligands and/or the relative binding affinities for the two free energy subsets. Stage 2 closed on 

8th February 2017 followed by the release of FXR agonist IC50s. 
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We participated in the challenge for the prediction of crystallographic poses for the 36 

ligands and for the relative binding affinities for the two subsets. For all calculations we used 

the Schrödinger Suite 2016-2 [38]. 

 

2.2 Ligand clustering and preparation 

Initially, we clustered the 36 compounds based on their chemotype (Table 1 and S1). For this 

purpose, the Canvas tool v2.8 of the Schrödinger Suite [39] was used for the calculation of 

Tanimoto similarity between the compounds based on their hashed linear 2D fingerprints. 

The complete cluster linkage method was used. The results of the Tanimoto similarity 

calculation are presented in Table S2. The 36 compounds with unknown crystal structures 

have different chemotypes belonging to five different groups: isoxazoles, benzimidazoles, 

spiros, sulfonamides and six miscellaneous compounds. Compound FXR_1 has a 

sulfonamide moiety but due to its substantial chemical similarity divergence from the other 

sulfonamide compounds it was incorporated in the miscellaneous group.  

 

Table 1. Clustering of the 36 compounds provided by D3R based on their chemotype. 

Isoxazoles Benzimidazoles Sulfonamides Spiros Miscellaneous 
FXR_4 
FXR_23 
FXR_33 

FXR_6 
FXR_7 
FXR_8 
FXR_9 
FXR_13 
FXR_14 
FXR_19 
FXR_20 
FXR_21 
FXR_22 
FXR_24 
FXR_25 
FXR_26 
FXR_27 
FXR_28 
FXR_29 
FXR_30 
FXR_31 
FXR_32 
FXR_35 
FXR_36 

FXR_15 
FXR_16 
FXR_17 

FXR_10 
FXR_11 
FXR_12 

FXR_1 
FXR_2 
FXR_3 
FXR_5 
FXR_18 
FXR_34 
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The LigPrep [40] tool of Maestro 10.6 was used for the preparation of the ligand structures 

(SI).  
 

2.3 Protein dataset and preparation 

The selection of the receptor crystal structure for the binding pose predictions has a 

significant effect on the successful prediction of an unknown protein-ligand complex [3]. As 

28 FXR protein structures are available in the protein databank (PDB) [16-28], the first 

challenge was to appropriately select a single or multiple protein structures for the pose 

prediction part of the challenge. A clustering of the structures based on the chemical type of 

the co-crystallized, native ligands was performed (Table 2) in order to identify any common 

cores with the compounds provided by D3R. Based on this clustering, we then chose a 

suitable group of protein structures for the docking calculations for each chemical group of 

FXR ligands. It was not possible to dock all ligands in one crystal structure because the 

binding pocket is very wide (Figure S1).  

 

Table 2. Clustering of the available FXR crystal structures based on ligand chemotype [16-

28]. 

Benzimidazoles Isoxazoles Steroids Indoles Others 

3OLF, 3OMK, 3OMM, 
3OOF, 3OOK, 3OKH, 

3OKI 

3RUT, 3P89, 3RUU, 
3P88, 3RVF, 3HC6, 
3HC5, 3GD2, 3DCT, 

3FXV, 3DCU 

4QE6, 
3BEJ, 
1OSV, 
1OT7 

3L1B, 
3FLI, 

4WVD 

4QE8, 
4OIV, 
1OSH 

 

The Protein Preparation Wizard tool [41, 42] was used to prepare the protein crystal 

structures (SI).  

2.4 Selection of the co-crystallized water molecules to be retained in the calculations  

Water molecules in the binding cavity should be taken into account during the binding pose 

predictions. Water molecules that consistently appeared in more than three crystal structures 

were kept. Specifically, in the isoxazole-FXR complex with PDB ID: 3P89, seven water 

molecules were kept, while for the crystal structures with benzimidazole ligands two water 

molecules were retained (Figure S2). 
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In addition, we performed a WaterMap [43-45] calculation in the unligated structure of FXR 

provided by the D3R organizers (apo structure). WaterMap uses Desmond to run a molecular 

dynamics (MD) simulation of water molecules in the ligand binding site of a receptor, which 

is restrained during the simulation. The excess enthalpy and entropy, and thus the free energy 

of the water sites are then estimated. These quantities can be used as a guide to which water 

molecules could be advantageously displaced on ligand binding. For the calculations, the apo 

structure was imported in the WaterMap panel and the binding site was defined by residues 

Phe288, Leu291, Met294, His298, Ser336, Ile339, Ile356, and Tyr373. 

 

2.5 Docking calculations 

The Standard Precision (SP) [46-48] and Extra Precision (XP) Glide [49] v.7.1 were used for 

the docking calculations. Initially, a grid, which describes the physicochemical properties of 

the binding sites, was generated by Glide. The van der Waals radii of non-polar atoms were 

scaled by a factor of 0.8 in order to avoid rejection of sensible poses due to receptor rigidity. 

Fully flexible ligand docking was performed with the OPLS3 force field. During the 

calculations, the hydroxyl groups of serine, threonine, tyrosine, and the thiol group of 

cysteine residues in the binding site were allowed to rotate to capture all possibilities for 

hydrogen bonding with the ligands. 

 

2.6 Pose prediction protocol 

For the pose prediction, we used a combination of computational techniques, depending on 

ligand chemotype. More specifically, we followed two different methodologies for: a) FXR 

ligands that share a common core with the available co-crystallized ligands and b) FXR 

ligands with a novel, completely unknown scaffold.  

For FXR ligands with a known scaffold our workflow included: i) choice of protein crystal 

structure to be used for docking, ii) docking and alignment of the ligand with the most 

chemically similar co-crystallized ligand based on shape similarity Tanimoto calculations, 

and iii) minimization of the complexes generated after the alignment. The chemotypes for 

which we followed this methodology are benzimidazoles and FXR_5, and FXR_34, which 

have an indole and steroid chemotype, respectively. In cases where two or more binding 
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modes seemed plausible, for example when a double occupancy of an ortho substituent was 

suspected, we used physics-based calculations such as WaterMap for the binding pocket of 

the apo structure, binding pose metadynamics, and FEP calculations to decide on the most 

probable pose. The following will cover a detailed description of these methods.  

For FXR ligands with a chemotype that had not been crystallized before, we chose the most 

appropriate crystal structure based on: (a) shape similarity of the ligand with the native 

ligands [50, 51], (b) cross docking in all 28 crystal structures, and (c) calculation of 

interaction fingerprints similarity [52, 53] followed by docking. According to the available 

FXR crystal structures, in most complexes either Ser336 or His447 or Tyr373 interact with 

the ligands via a hydrogen bond and Arg331 interacts with the carboxyl group of the ligands, 

therefore these were the main interactions that were taken into account using the interaction 

fingreprints similarity. This methodology was applied on the spiros and sulfonamides groups, 

and FXR_1, FXR_2, FXR_3, and FXR_18 from the miscellaneous group. In case multiple 

poses were plausible, we performed metadynamics calculations in order to distinguish the 

most stable among two or more poses. 

Whenever unreasonable conformations (based on chemical principles) were obtained, 

Quantum Mechanical (QM) calculations were employed to obtain the minimum energy 

structure. A detailed diagram of the pose prediction methodology is presented in Figure S3.  

 

2.6.1 Binding pose prediction for compounds with known chemotypes  

Benzimidazoles 

Initially, all seven benzimidazole native ligands (Table 1) were docked in the 3OLF crystal 

structure in order to test whether benzimidazoles have a common binding mode that can be 

reproduced using 3OLF. 3OLF crystal structure has the highest resolution in the 

benzimidazole series. However, due to the receptor rigidity during docking calculations, 

some ligands did not preserve the benzimidazole binding mode as expected, or even if they 

did, some of them were slightly shifted from 3OLF native ligand position. Because al 

available native ligands had the same binding mode and their benzimidazole core was almost 

perfectly aligned, we expected that this would be the case for the dataset compounds as well. 

Thus, an additional clustering of benzimidazole FXR agonists was performed according to 

the ring type attached to the amide, which seems to define their specific binding modes in 
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FXR. Three clusters resulted: those bearing a) an ortho substituted phenyl ring, which were 

docked in 3OLF, b) a non ortho substituted benzene ring, which were docked in 3OOF, and 

c) a saturated ring attached to the amide, which were docked in 3OKI (Table S3). 

Benzimidazole FXR agonists were docked using the protocol described in Section 2.5. 

Docking was followed by an alignment of the resulting top-scoring benzimidazole pose with 

the corresponding co-crystallized ligand. For ligand alignment, the “Flexible Ligand 

Alignment” option in Maestro was used and the common scaffold alignment method was 

chosen. Subsequently, an energy minimization of the residues around the ligands was 

performed using the Prime tool of Schrödinger Suite, assuming that the protein will adapt to 

the ligand binding mode. The “protein_near_ligand” option was used to define the area for 

minimization. This energy minimization alleviated any clashes between the ligands and the 

protein residues. 

 

Isoxazoles  

To identify the most suitable crystal structure for docking for each of the isoxazole 

compounds (FXR_4, FXR_23, and FXR_33), the following methodology was pursued. Due 

to the fact that FXR_4 is structurally considerably different to the native ligands containing 

an isoxazole ring, a similarity search against all FXR agonists was performed. For this 

purpose we used the Shape Screening program (SHAPE) [50, 51]. SHAPE performs a 

conformational search is performed and each conformer is aligned to the query in various 

ways, and a similarity is computed based on overlapping hard-sphere volumes. The volume 

scoring was based on Phase QSAR atom types [54] that were assigned and up to 10 

conformers were retained per rotatable bond. In the atom-based QSAR models, the atoms of 

the ligand are represented as spheres of van der Waals radii and atom types are assigned 

based on whether they are a hydrogen-bond donor, hydrophobic or nonpolar atom. All other 

options were left to default. Moreover, cross-docking between FXR_4 and the 28 known 

crystal structures was performed using the XGlide tool of Schrödinger Suite. The results were 

evaluated by visual inspection and by using the Interaction Fingerprints tool [52, 53]. 

Interaction fingerprints evaluate the presence or absence of particular types of interactions 

between a set of FXR ligands and the active site residues of FXR. All possible interactions 

were included during the calculation and a score, the interactions similarity score, to compare 

interactions between the input ligands and the receptor was generated (see Results section). 
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Subsequently, we followed the pose prediction methodology described in Section 2.6. For 

compound FXR_4, because of its dissimilarity with the other two isoxazoles in the series 

(FXR_23 and FXR_33), more than one possible conformation was generated and binding 

pose metadynamics was also used for the ranking of the poses. 

After following the same procedure for FXR_23, we noticed that the adjacent amide and 

isoxazole groups are not in the same plane. Because of the conjugation of the system, the 

atoms involved are expected to adopt a coplanar conformation due to the delocalization of the 

electron density of the p orbital. A 1D torsional scan was thus applied for the rotation around 

the amide-isoxazole bond to investigate the coplanarity of the moiety. For the torsional scan, 

the Relaxed Coordinate Scan tool within Jaguar [55, 56] was used. The resulting pose was 

docked using constraints on the desirable conformation of the amide and then aligned with 

the native ligand using the isoxazole unit as the common core for the alignment. The choice 

of the crystal structure for FXR_33 was based on the high similarity between the native 

ligand of 3P89 and FXR_33 (visual inspection). 

 

Miscellaneous  

In the miscellaneous group, compounds FXR_5 and FXR_34 have chemotypes previously 

characterized in crystal structures in the PDB. Thus, FXR_5 was aligned to 3FLI native 

ligand and then energy minimization of the residues around the ligand was performed to 

alleviate any clashes. Compound FXR_34 was docked in 1OT7 structure using SP docking 

and Induced Fit Docking (IFD) [57-60], which allows the protein structure to adjust to the 

ligand, with core constraints in order to be aligned to 1OT7 native ligand with the maximum 

common substructure. The default IFD protocol was used: initial Glide docking by using a 

softened potential, side-chain prediction with Prime for each protein-ligand complex, Prime 

minimization of the ligand and the residues close to it and finally, SP Glide re-docking of the 

ligand in the induced-fit receptor structure. Two SP and three IFD poses were generated 

using this protocol and these were submitted to binding pose metadynamics calculations in 

order to identify the most stable one. 
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2.6.2 Compounds with possible double occupancy or multiple binding poses 

For compounds that could adopt multiple orientations due to substituent rotations, physics-

based methods were used to determine the most energetically-favorable orientation. 

WaterMap calculations 

The ortho methoxy group orientation in compounds FXR_6, FXR_14, FXR_30, FXR_31, 

and rotation around the ether bond of FXR_20 could result in a double occupancy of these 

structures. Therefore, these were superimposed to the water network derived from the 

WaterMap calculation in the apo structure of FXR as described above (Section 2.4). The 

conformations for which the docked poses could displace a thermodynamically unfavorable 

water molecule were chosen. 

Metadynamics calculations 

For compounds that could adopt multiple orientations due to substituent rotations, such as in 

FXR_22, FXR_32, FXR_4 and FXR_34, metadynamics calculations were performed using 

the binding pose metadynamics tool of Desmond [61], for a series of generated poses by 

docking. For FXR_22, rotation around the bond between the benzimidazole ring and 1-

methoxymethyl benzene was performed and two poses were generated. The two poses 

underwent a series of metadynamics simulations in order to rank them and predict the most 

stable binding mode. Pose stability is determined by calculating the ligand RMSD 

fluctuations over the course of the simulation, and the persistence of important interactions 

(such as hydrogen bonds and π-π interactions) between the ligands and the receptor (or any 

other cofactors or solvent molecules, if present). Forces are imposed on the ligand, which 

tend to displace it from its initial position. The stronger the forces needed for the 

displacement, the more stable the pose is. The initial pose of the ligand is the reference for 

the RMSD calculation and this is the collective variable for the metadynamics simulation. 

Several simulations are performed for better statistics and an average is calculated. Α 

Composite Score is then calculated that accounts for the interactions persistence between the 

ligand and the active site and the average energy-weighted expectation of the RMSD in each 

trajectory. For the calculation setup, the receptor-ligand complexes were introduced to the 

calculation panel and default values were used. FXR_32, which also bears a 1-

methoxymethyl benzene group, was aligned to the pose of FXR_22, which was the most 

stable according to the metadynamics calculation. 
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For FXR_34, although the steroid group was expected to bind in the same way as other native 

steroid ligands [24, 27], the position of the isophthalic acid was not obvious. Therefore, five 

distinct poses of this moiety were generated using Glide SP docking and IFD (as mentioned 

in Section 2.6.1 – miscellaneous compounds), by keeping the steroid part of FXR_34 

constrained and aligned to the 1OT7 native ligand. Five structurally distinct poses (1st and 3rd 

ranked poses from Glide SP and 1st, 3rd and 4th poses from IFD) were submitted to binding 

pose metadynamics calculations for the assessment of the most stable pose. 

For FXR_4, docking generated two equally-probable conformations in the binding pocket 

and thus binding pose metadynamics calculations were also used to rank them. 

 

Free energy perturbation calculations 

For benzimidazole derivatives for which the benzyl group had two equivalent ortho chlorine 

positions, FEP calculations were used for investigating their probability to occur. FXR_27 

was selected as a representative of this group and was subjected to FEP calculations. 

FXR_24, FXR_25 and FXR_28, which also have ortho substituted benzene rings, were 

aligned to the pose of FXR_27 resulting from FEP calculations. 

In addition, the ortho chloro substitution in FXR_23 can also adopt two equivalent positions 

and therefore FEP calculations were performed. 

 

2.6.3 Binding pose prediction for compounds with unknown chemotypes  

Spirocyclic (Spiros) 

Spirocyclic FXR agonists FXR_10-12 have not been previously described in the literature 

and thus no available native ligands of this chemotype existed in the PDB. To predict this 

completely unknown binding mode, we first calculated their shape similarity with native 

ligands from each chemotype in order to choose a suitable protein crystal structure for 

docking. For this purpose, the SHAPE tool [50] was used to screen FXR_10, FXR_11, and 

FXR_12 molecules against all known co-crystallized ligands. Each structure was aligned to 

the query and conformers of the compounds were generated. Similarity was computed based 

on overlapping hard-sphere volumes. The volume scoring was based on the atom types and 

Phase QSAR types were assigned (described in Section 2.6.1 isoxazoles group), and up to 10 
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conformers were retained per rotatable bond. All other options were left to default. FXR_10 

was docked in the 3OMM structure proposed by the shape similarity results. SP Glide 

docking of FXR_10 in 3OMM indicated two equally probable binding modes, with the 

bromo phenyl ring pointing to two different directions. These poses were subjected to binding 

pose metadynamics calculations for the assessment of the most stable as described in Section 

2.6.2. Compounds FXR_11 and FXR_12 were aligned to the most stable pose of FXR_10. 

Additionally, we performed cross docking of FXR_12 in all 28 available crystal structures 

using the XGlide tool. The protein structures were imported to XGlide in the form of a grid 

generated by Glide and FXR_12 was docked in all using SP Glide. The choice of the most 

appropriate crystal structure for docking was then based on the best Glide Score. FXR_10 

and FXR_11 were aligned to the chosen FXR_12 conformation. 

Miscellaneous compounds 

In the miscellaneous group, FXR_1, FXR_2, FXR_3 and FXR_18 did not have a common 

chemotype with the available co-crystallized ligands. To determine any similarity with native 

ligands, the SHAPE tool [50, 51] was used to calculate the shape structural similarity 

between them and FXR_1. The protein crystal structure with the native ligand having the 

greater similarity score was chosen for docking (Table S2). The three top generated poses 

from docking were submitted to binding pose metadynamics to predict the most probable 

binding pose. The choice of the protein crystal structure for docking FXR_2 was also based 

on shape similarity results. Alignment to the native ligand and energy minimization of the 

residues around the ligand followed. FXR_3 was cross-docked in all 28 crystal structures 

using the XGlide tool of Schrödinger suite. The docking poses of FXR_3 were examined for 

their interactions similarity with the respective native ligand poses. The crystal structure, 

which was chosen for docking FXR_3, was based on its Glide Score as well as the interaction 

fingerprints Tanimoto similarity [62]. FXR_18 was docked in the crystal structure chosen by 

the shape similarity results using SHAPE tool of Schrödinger. After docking, FXR_18 was 

aligned to the native ligand based on their maximum common substructure using the Flexible 

Ligand Alignment tool. Moreover, a binding pose metadynamics calculation was employed 

to identify the most stable conformation of the acetamide group. 
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Sulfonamides 

FXR_15, FXR_16, and FXR_17 possess a pyrrolo or pyrazolo pyridine substituted with a 

sulfonyl and an amide group, and had no crystallographic precedent in the known FXR 

literature. In order to assess the maximal similarity of the sulfonamide core with available 

native ligands, cross docking with the XGlide tool of Schrödinger between the 28 known 

crystal structures of the protein against these three ligands was used. In order to estimate the 

stability of the resulting poses, a geometry optimization was performed in Jaguar [55, 56]. 

We performed QM and not metadynamics calculations because in this case we evaluated the 

energetics of the resulting conformation and did not assess two or more binding poses. For 

the calculation, the 6-31G** basis set was used and the DFT level of theory (B3LYP) was 

applied. The resulting poses were re-docked first with SP Glide and then with XP Glide.  

 

2.7 Relative binding free energy predictions 

For the free energy predictions, two compound subsets were provided by D3R. The first 

subset consisted of 15 sulfonamide analogs and the second subset of 18 spiros analogs 

(Tables S4 and S5). Each subset includes congeneric series of compounds, allowing the 

calculation of relative binding free energies by alchemical free energy transformation 

methods. No experimental data indicating the compounds’ binding modes were available. 

Relative binding free energies for the two subsets were estimated using FEP calculations. The 

free energy is associated with the partition function Z by using the following formula from 

statistical thermodynamics: 

𝑅𝑇ln 𝐾! = ∆𝐺!"#$
! = −𝑅𝑇ln !!"#$%&'

!!"#$%&'
,                                                                                   (1) 

where KD is the dissociation constant and 𝑍!"#"$ = exp !!!
!!!

!"#"$
!  

This equation would allow calculation of the free energy difference, assuming that we can 

assess the potential energies of all possible microstates for each state. In practice, this 

calculation is computationally intractable, and thus we calculate the differences between the 

binding affinities of two compounds. A relative free energy calculation formula is derived 

from equation (1) to describe similar systems, avoiding the calculation of the absolute free 

energies: 



16 

∆∆𝐺!,!! = ∆𝐺!,!"#$
! − ∆𝐺!,!"#$

! = −𝑅𝑇ln
!!"#$%&'
! !!"#$%&'

!

!!"#$%&'
! !!"#$%&'

! = ∆𝐺!,!"#$%&'(
! − ∆𝐺!,!"#$%&'(

! .         (2) 

By using differences of binding affinities, the calculation depends only on the free energy 

change of the transformation of system A to system B in the bound and unbound states. The 

transformation could involve changes in the chemical composition of the systems (Figure 1), 

and thus resolve the error associated with computing absolute free energies. A more detailed 

description of the FEP methodology can be found in the SI. 

 

Figure 1. The calculation of the relative binding free energy of ligand B with respect to ligand A, 

which is the difference ΔG0
2 - ΔG0

1, and models the binding process of each ligand to the protein, is 

computationally intractable. Hence, a closed thermodynamic cycle is contrived. In this cycle, the 

difference in the free energy between the mutation of ligand A to B in solvent and the same mutation 

in the complex, i.e. ΔG0
B - ΔG0

A, equals to ΔG0
2 - ΔG0

1, which is the free energy of interest. The 

mutation of ligand A to B, which is the addition of the orange substituent (circled in red), is 

computationally feasible. If this difference in the binding free energy is negative, then it is expected 

that the binding of ligand B will be more favorable than A. 
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Obtaining accurate FEP predictions requires overlap of the phase space between the initial 

(ligand A) and the final (ligand B) state. This is feasible by the introduction of neighboring 

lambdas (λ), i.e. intermediate alchemical states, along a perturbation path, because larger 

perturbations generally result in less overlap between the states. When sufficient overlap is 

not attained, one can either rerun the calculations using more λ windows or insert 

intermediate compounds. Hence, in order to assure the overlap, an intermediate compound 

can be introduced to the calculation in order to bridge the conformational space between two 

ligands for which their potential energies do not sufficiently overlap. For more information 

about the λ schedule we used here, the reader is referred to the SI. 

During a FEP calculation, one ligand from the congeneric series acts as reference to which all 

other compounds are aligned. In this way, the conserved binding mode as well as the 

improved overlap between the windows are secured. The reference compound is usually 

chosen as the compound with the higher certainty of the predicted binding mode, while at the 

same time it has to be representative of the compound set. In absence of crystallographic 

data, the choice of the reference compound could be made depending on the highest 

interactions similarity with the native ligand based on interaction fingerprints. Here, FXR_74 

and FXR_17 were chosen as reference structures for the spiros and sulfonamide sets, 

respectively. 

The poses of compounds FXR_17 and FXR_74 were initially generated as described in the 

pose prediction part of the challenge (see Section 2.6). All structures in the spiros and 

sulfonamides sets were aligned to their respective reference structures prior to FEP 

calculations. At the end of Stage 1, the co-crystallized structures of the FXR ligands were 

released including FXR_10 and FXR_12 from the spiros set and FXR_17 from the 

sulfonamide set. In Stage 2, we repeated the free energy predictions, considering the real 

binding poses. 

Next, we provide some practical considerations pertaining to the use of the FEP methodology 

for lead optimization.  

 

2.7.1 The total charge of the system has to be conserved during a FEP calculation 

Roux and co-workers have found that changing the total charge during a FEP calculation 

produced results, which were consistent with experimental data [63]. However, recent studies 
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showed that this approach leads to inconsistent results [2]. More specifically, when a FEP 

calculation starts from a positively charged molecule and uses a neutral intermediate yields a 

hysteresis between forward and backward mutations above 2 kcal/mol. Previous studies have 

shown that turning on or off a charge in a system during a FEP calculation is nontrivial when 

using Particle Mesh Ewald (PME) for the treatment of electrostatics [64, 65]. The problem 

arises mainly from the fact that a charge change in PME is handled by introducing a uniform 

neutralizing background charge to enforce neutrality [66]. In FEP calculations this means that 

instead of calculating the free energy of turning off/on a charge, the calculated free energy is 

the sum of turning off/on the charge and the free energy of turning on/off a uniform 

neutralizing background charge, which might introduce an error in the overall difference in 

the free energy of binding. 

For the D3R challenge, one of the ligands in the sulfonamide subset bears a carboxyl group, 

which is deprotonated in physiological pH (Table S4). For the spiros subset, the majority (14 

out of 18 ligands) also has a carboxyl group (Table S5), while the remaining compounds are 

neutral. Because ligand charge cannot change during a FEP mutation, all compounds were 

considered in their neutral form during the calculations.  

 

2.7.2 Alignment to the reference ligand 

A primary assumption of FEP is that all ligands in the series retain the same binding mode. 

Therefore, before conducting FEP calculations, all ligands were aligned to the reference one, 

with the same procedure followed for pose predictions using the Flexible Ligands Alignment 

tool of Schrödinger Suite.  

 

2.7.3 Correcting the relative free energy for double occupancy 

During Stage 2 of the challenge, the free energy calculations were repeated taking into 

consideration the real binding mode of the reference ligands into consideration. For the 

compounds crystallized with a double occupancy, we included both poses in the calculations. 

In such cases, when the two conformations rapidly inter-convert during the simulation, then 

the same ΔΔG is expected and the one of the two conformations can be ignored. If one of the 

two poses is significantly less stable, it can be discounted from the results. Finally, if both 
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compounds maintain separate binding poses, but result to the same binding free energy, the 

binding free energy for multiple poses can be corrected using equation (3) [67]: 

 

𝛥𝛥𝐺!"# = −𝑘𝑇 ln !"#(!!""!!"#$!)!!"#(!!""!!"#$!)
!

,                             (3) 

where ΔΔGcor is the corrected binding free energy difference, ΔΔGpose1 and ΔΔGpose2 are the 

two poses resulting from double occupancy. 

 

2.7.4 Running FEP calculations using the FEP+ tool 

All compounds were connected to each other with the use of FEP Mapper panel and the 

calculation run with FEP+ of Schrödinger Suite. In FEP Mapper compounds are connected 

with each other with edges, according to LOMAP algorithm criteria [68], i.e. chemical and 

binding mode similarity, preservation of rings, preservation of ligands charge. The lead 

optimization mapper (LOMAP) is an automated algorithm for the generation of the most 

efficient mutations between ligands of a library, according to several criteria such as their 

chemical and binding mode similarity and the preservation of rings and net charges during 

the mutations. Additionally, it ensures that each molecule belongs to at least one closed 

thermodynamic cycle and that the FEP maps, which are created, are spanned by relatively 

few calculations. Users can define their own connections and cycles, but each compound 

should be part of at least one closed thermodynamic cycle. In the generated FEP+ map, which 

shows all the connections between the compounds, each edge represents two perturbations, 

one in the bound and one in the unbound state (see Results section). The FEP calculations 

were performed on Tesla K40m GPUs. The running protocol of FEP+ consists of several 

consecutive steps, which are automatically performed (SI).  

2.7.5 Error estimation and convergence  

The Bennett Acceptance Ratio (BAR) method was used to estimate the free energy difference 

of the MD simulations [69]. The errors in the relative free energies were calculated with the 

cycle closure method using the default scheme applied in FEP+ [11, 70]. After performing a 

FEP calculation, FEP Mapper identifies unconverged edges, which are FEP calculations 

between a pair of ligands that have not converged or have not been correctly set up. These 

edges will contribute to high hysteresis, and FEP Mapper returns them using a color code. 
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Green indicates a converged edge and unconverged perturbations are colored red. 

Unconverged perturbations are judged by hysteresis error and also the difference between the 

raw and predicted ΔG values. For more information see the SI. 

To calculate the convergence of each FEP calculation in the FEP Map, the total free energy 

differences between the two ligands (ΔG in kcal/mol) in solvent and complex legs are plotted 

as a function of time. In FEP+, three plots for each leg show the accumulated data during 

different time window schemes: forward; reverse; and sliding window, and the associated 

bootstrap and analytical error estimates from corresponding simulation legs are also reported. 

For the sliding window free energy calculations are performed for small windows of the 

trajectory without averaging from beginning to that point or from the end to that point 

backwards, similar to a running average. Bootstrapping is a statistic analysis technique, 

which is used by the program to re-sample the free energy and calculate its variance. The 

forward time plot presents the cumulative over time free energy from all λ, starting from t=0 

ns to t=5 ns for each window, while the reverse time plot presents the cumulative over time 

free energy from all λ, starting from t=5 ns to t=0 ns for each window (Figures S22-S23). 

FEP+ performs FEP with Replica Exchange with Solute Tempering (FEP/REST) to enhance 

the sampling of the ligand. Moreover, the exchange density of FEP replicas over λ windows 

in the REST simulations is calculated. For more information about FEP/REST enhanced 

sampling see the SI. 

 

2.7.6 Analysis of FEP calculations 

After performing the FEP+ calculations and the convergence check, the differences in the 

free energy of binding of each compound with respect to the reference ligand are output. For 

each FEP calculation, visualization of the trajectory was performed to monitor the extent of 

sampling, (e.g. ring flipping) and also the intermolecular interactions. FEP+ analyzes 

intermolecular interactions by providing a panel of protein-ligand interactions for λ=0 and 

λ=1 replicas for each calculation. The specific interactions types assessed and displayed are: 

hydrogen bond, hydrophobic, ionic and water bridges, which are provided as percentages 

norrmalized over the course of the trajectory. FEP+ provides a protein analysis report for 

end-point λ replicas, which contain the RMSD of the protein for λ=0 and λ=1. This report 

indicates any structural instabilities or conformational changes during the simulation. Also, it 

calculates the Root Mean Square Fluctuation (RMSF) for each residue to assess any local 
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changes along the protein chain, overlaid with the experimental B factor. 

Finally, a ligand conformational analysis is provided in which rotatable bonds for each ligand 

are enumerated and color-coded. For each rotatable bond, a representative dihedral angle is 

monitored throughout the simulation for both complex and solvent legs. The distributions of 

these conformations are then plotted shown both for the solvent and complex legs. In 

addition, the potential energy around each rotatable bond is also shown as an overlay of the 

dihedral angle distribution histograms. 

 

3. Results and Discussion 

3.1 Pose prediction for the FXR ligand dataset 

Based on native co-crystallized ligand clustering, we chose a suitable group of protein 

structures for the docking calculations for each chemotype of FXR ligands. The choice of 

each PDB crystal structure for each ligand is presented in Table S6. At the end of Stage 1, the 

36 crystal structures were released for evaluation of the submitted predictions; except for one 

compound FXR_33, which bore a pyridine group instead of an N-oxide due to oxidation 

during the growth of the crystal or pyridine as impurity. 

 

3.2.1 Compounds with known chemotypes 

Benzimidazoles 

Benzimidazole derivatives co-crystalized with FXR were initially docked in the 3OLF crystal 

structure [25], which failed to reproduce their binding mode. As Figure S5 depicts, although 

poses of native ligands using 3OLF, 3OMM, 3OOK, and 3OMK structures were correctly 

predicted, docking could not place properly the phenyl ring bound to the amide linker in the 

3OOF native ligand, with a flip of ~90o of the ring taking place. 

Comparison of the 3OOF native ligand with the 3OLF ligand shows that the phenyl 

substituents of the amide are almost vertical to each other. In the 3OOF structure the ring is in 

the same plane with the amide (satisfying the maximum overlap of the p orbital of the two 

groups), whereas in 3OLF it is perpendicular to it, probably because of steric clashes between 

the methyl group and the amide hydrogen. Due to this rotation of the phenyl ring in the 3OLF 

ligand structure, Met294 approaches the ring to form van der Waals interactions. This is not 
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the case in 3OOF structure, where Met294 points out of the pocket (Figure 2). Consequently, 

when 3OOF native ligand is docked into 3OLF crystal structure, the steric clashes with 

Met294 do not allow it to adopt its crystal conformation. Regarding the native ligands of 

3OKI and 3OKH crystal structures, which have a saturated ring instead of a phenyl ring, their 

docking in 3OLF crystal structure performed well for 3OKI ligand (with an RMSD value of 

0.5 Å between the predicted pose and the crystal structure), but not for 3OKH ligand 

(RMSD=1.35 Å). 

 

Figure 2. Comparison of the 3OLF (maroon) and 3OOF (yellow) crystal structures. Met294 

points towards the ligand in 3OLF structure, while in 3OOF, Met294 points away due to a 

clash with the carboxyl group. 

 

Therefore, as mentioned in the Methods section, the benzimidazoles were clustered in three 

groups according to the crystal structure used for the docking. The above procedure secured 

the conserved binding mode of benzimidazoles. Compounds FXR_7-9, FXR_19, FXR_21, 

FXR_26, FXR_29, FXR_35-36 binding poses were generated with this methodology, while 

the remaining benzimidazoles were subjected to further pose optimization. In the majority of 

these cases (FXR_8-9, FXR_19, FXR_21, FXR_26, FXR_29), predictions were accurate, 

having an RMSD value lower than 1 Å with respect to the actual crystal structure (Table 3). 
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Table 3. RMSD (in Å) and ranking results for the 1st ranked poses for all 36 ligands. 
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Benzimidazoles 

3OLF 
FXR_14 0.68 
FXR_24 1.19 
FXR_25 0.33 
FXR_27 0.31 
FXR_28 0.86 

3OOF 
FXR_21 0.8 
FXR_29 0.4 
FXR_36 0.92 

3OKI 
FXR_6 0.53 
FXR_7 0.52 
FXR_8 0.44 
FXR_9 0.32 

FXR_13 0.56 
FXR_19 0.52 
FXR_20 0.82 
FXR_22 2.2 
FXR_26 0.99 
FXR_30 0.89 
FXR_31 0.54 
FXR_32 2.26 
FXR_35 1.23 

Isoxazoles 
FXR_4 6.77 

FXR_23 7.76 

Miscellaneous 
FXR_5 0.38 

FXR_34 3.54 
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Spiros 
FXR_10 2.14 
FXR_11 2.49 
FXR_12 2.48 

Sulfonamides 
FXR_15 5.66 
FXR_16 1.57 
FXR_17 1.63 

Miscellaneous 

FXR_1 5.99 
FXR_2 7.47 
FXR_3 8.37 

FXR_18 8.42 
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For FXR_7, the phenyl thiophene moiety demonstrated a double occupancy (51:49), with our 

prediction capturing one of the two binding modes (Figure 3) and an RMSD=0.517 Å with 

respect to the X-ray pose. 

 

Figure 3. Double occupancy in FXR_7 compound and comparison with our prediction. The 

two crystal binding poses are presented in orange and purple and the predicted pose in green. 

The RMSD between the orange and the green poses is 0.52 Å. 

 

Interestingly, for FXR_35, although the predicted binding mode is consistent with the 

experimental one, the RMSD is higher than 1 Å. This is due to the flip of the 

cyclohexylmethanesulfonic acid moiety, possibly occurring from the retained water 

molecules in the structure, where the ligand was docked, and which are displaced in the 

crystal structure (Figure 4 left). FXR_36 RMSD value, which is close to 1 Å, is a result of the 

inversion of the thiazol ring, the second possible binding mode of which was not examined 

(Figure 4 right). 
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Figure 4. FXR_35 and FXR_36 predicted poses (green) and crystal structures (orange). Left: 

FXR_35 predicted pose has a flipped saturated ring (RMSD=1.23 Å). Right: FXR_36 has an 

inversed thiazole ring (RMSD=0.92 Å). 

 

In cases where double occupancy was a possibility, e.g. when an ortho substituent could be 

found in two equivalent orientations, we performed extra calculations described here. 

Compounds FXR_6, FXR_14, FXR_30, FXR_31 bear an aromatic ring with two methoxy 

substituents; one in the ortho and the other in the para position. The ortho substituent can 

occupy both equivalent positions, and in order to identify which of the two is most probable, 

we used a WaterMap calculation in the FXR apo structure. In fact, we examined whether the 

methoxy group could replace any thermodynamically unstable waters in either of the two 

ortho positions. Subsequently, superposition of the compound with the water network (Figure 

5) indicated in which of the two positions methoxy could displace or retain unfavorably or 

favorably bound waters, respectively. In Figure 5, it is clearly shown that the ortho methoxy 

on the left position of FXR_6 benzene ring could replace an unstable water. Therefore, 

compounds with this specific substituent were submitted at this conformation. 
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Figure 5. Superposition of FXR_6 possible methyl orientations with WaterMap calculation 

in the apo structure. A and B show the conformation of FXR_6 when the methyl substituent 

is on the left of the ring and C and D when it is on the right.  

  

Comparison with the actual crystal structures showed that both possible binding modes were 

correct in the cases of compounds FXR_6 and FXR_14, since their 1,3-dimethoxybenzene 

ring has double occupancy (Figure S6). 

On the contrary, FXR_30 and FXR_31, which bear a 2,6-dimethoxypyridine instead of a 

dimethoxybenzene ring, do not display two possible interchangeable binding modes. In this 

case, the predicted poses using the water networks, were correct. 

Comparison with the water network retrieved from the WaterMap calculation in the apo 

structure was also conducted for FXR_20. The methyl group in the chloro benzene ring 

should point in the same direction as for FXR_6, so as to displace an energetically 

unfavorable (unhappy) water (Figure 5). 
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Surprisingly, both poses occurred during crystallization, but this time not in the double 

occupancy form, i.e. they do not rapidly interconvert. Instead, the crystallized structure 

consisted of two crystal monomers and in each chain FXR_20 adopts the two different 

conformations. This means that FXR_20 adopts both poses in the binding pocket, but once it 

binds to the protein, conserves its pose with no interconvertion. According to the D3R 

guidelines, only the lowest RMSD between submitted poses was considered, thus this 

submission resulted in an RMSD of 0.82 Å (Figure S7). 

For FXR_22 because of the rotation of the (1-methoxymethyl)benzene group, two poses of 

FXR_22 were generated by docking and were evaluated for their stability using a binding 

pose metadynamics simulation. The results indicated the pose of the Figure S8A as the most 

stable. Based on this, a similar conformation was submitted for FXR_32, which bears a (1-

methoxymethyl)benzene group in the same position. However, the CompScore, from the 

FXR_22 metadynamics calculations was 1.003 for the first ranked pose versus 1.113 for the 

second one. Their difference is negligible and perhaps this explains why the other 

conformation was the correct one, with an RMSD value of 0.71 Å versus 2.20 Å of the 

submitted pose (Figure S8). 

  To assess the most probable orientation of the ortho substitution in the amide bound benzene 

ring of FXR_24, FXR_25, FXR_27 and FXR_28 compounds, we used FEP calculations. In 

detail, the relative binding free energy between the two equivalent positions of chlorine in 

FXR_27 was calculated and the thermodynamically most favorable was submitted. 

According to the calculation shown in Figure 6, the FXR_27 pose with the chloro substituent 

pointing up is energetically more favored than the other. Thus, all four compounds were 

submitted having a similar conformation. 
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Figure 6. FEP results for the identification of the most stable pose of the ortho substituent for 

FXR_27. The cycle closure free energy values are indicated in purple and the raw values in 

blue (in kcal/mol). The large difference between the two values is due to the high hysteresis 

of the cycle (Δ=-3.08 kcal/mol). 

 

Indeed, this prediction was successful for FXR_27 and FXR_25 (Figure 7 upper panel), but 

not for FXR_24 and FXR_28 (Figure 7 lower panel), which have an ortho fluoro substitution 

in the benzene ring, attached to the amide. In FXR_24 the ring flips by 180o, while in 

FXR_28 it turns approximately 50o. It is possible that this flip in the case of FXR_28 happens 

because in this conformation the p orbital of the benzene ring and the ether oxygen have the 

optimal overlap without the fluorine making any steric clashes as in the case of the amide in 

FXR_24, 25, 27.  
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Figure 7. Ortho substitutions in benzene ring of FXR_27 (RMSD=0.31 Å), FXR_25 

(RMSD=0.33 Å), FXR_24 (RMSD=1.19 Å) and FXR_28 (RMSD=0.86 Å). 

 

Miscellaneous 

From the miscellaneous group, compounds FXR_5 and FXR_34 have common chemotypes 

with native ligands available in the PDB. Specifically, FXR_5 is almost identical with the co-

crystallized ligand in 3FLI crystal structure. Their only difference is that 3FLI ligand has an 

isopropyl formate group attached to the heterocyclic ring instead of an ethyl formate as is the 

case of FXR_5. Thus, for FXR_5, the same methodology as for benzimidazoles was applied. 

As expected, FXR_5 maintained the binding mode of 3FLI native ligand (Figure S9). 

Compound FXR_34 has a steroid core. There were four crystal structures in PDB with a 

steroid native ligand and we used 1OT7 as a guide to obtain FXR_34 binding mode. The 

steroid part of FXR_34 was expected to be found in the same location and orientation with 

1OT7 ligand, however, the conformation of the isophthalate ring was ambiguous. Therefore, 

binding pose metadynamics calculations were used in order to identify the most stable pose. 

Because these calculations can only distinguish the most probable pose among others, and not 

generate a predicted one, two poses of FXR_34 ligand were generated by SP docking and 
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three by IFD. In both calculations, core constraints were applied to the steroid ring of 

FXR_34, so as to be perfectly aligned to that of 1OT7 ligand. The five poses of FXR_34, 

which were evaluated by metadynamics simulations for their stability are shown in Figure 

S10. 

Unexpectedly, the FXR_34 crystal structure revealed that the steroid moiety adopts a 

different conformation in the pocket (Figure 8), in contrast to the crystal structures with co-

crystallized steroid native ligands (PDB IDs: 4QE6, 3BEJ, 1OSV, 1OT7). Admittedly, 

FXR_34 ligand bears a major alteration in its chemical structure with respect to the steroid 

ligands from the PDB. This is a clear example of a ligand modification, which leads to an 

alternate binding mode and may result in incorrect interpretations in structure-based drug 

design. None of the participants accurately predicted the correct pose (RMSDs>2 Å). 

 

Figure 8. Left: Superposition of the submitted pose of FXR_34 (green) with the crystal 

structure (orange) (RMSD=3.54 Å). Right: Overlaid steroid ligands crystal structures 

available in the PDB. 

 

Isoxazoles 

FXR_4, FXR_23 and FXR_33 belong to the isoxazoles group. Although the isoxazole ring is 

present in many co-crystallized ligands, the shape similarity scan for the FXR_4 showed that 

its structure is more similar to benzimidazoles derivatives (Shape Similarity Score>0.5, Table 

S7). Cross-docking of FXR_4 in all FXR crystal structures was also performed. The resulting 

docked poses were evaluated by visual inspection and the Interaction Similarity score. The 

docked poses of FXR_4 generated in 3OMK (Fingerprints Similarity 0.46) and 3OOF 

(Fingerprints Similarity 0.58) were promising for a reasonable prediction of the binding 

mode. Both structures have been co-crystallized with a benzimidazole derivative, which 

further supported the SHAPE results. The docked pose in 3OMK was aligned with the co-
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crystallized ligand and subjected to minimization with Prime to remove any steric clashes 

with the amino acids of the active site. Docking in 3OOF generated two different 

conformations of FXR_4 in the binding pocket and thus binding pose metadynamics was 

used to rank them. The best ranking pose, based on the Composite Score, was also aligned 

with the co-crystallized ligand, using the maximum common core, followed by minimization 

in Prime to remove steric clashes. A hydrogen bond between the isoxazole ring and Tyr373 

was present in both submitted poses, which further supported our pose choice. Despite this, 

the co-crystallized FXR_4 revealed an unexpected binding mode (Figure S11). The RMSD 

results provided by D3R showed that the average RMSD value for the submitted poses was 

between 1.4-2.8 Å for the first three best predictions and above 3.7 Å for the rest of them. 

A torsional scan was applied on the amide bond of FXR_23 to calculate the most preferable 

conformation. As depicted in Figure S12, the energy is minimum when the conformation of 

the bond is almost planar. 3P89 protein structure was selected to be used for docking 

FXR_23, based on shape screen against all the available crystal structures (Shape Similarity 

Score>0.5) and the cross docking results (Fingerprints Similarity 0.64). The docked pose was 

aligned with the co-crystallized ligand and subjected to minimization in Prime. Taking into 

consideration the double substitution of the phenyl group of the co-crystallized ligand, we 

decided to investigate further the position of the chlorine atom of the mono-substituted 

phenyl group of FXR_23. For this, FEP calculations were used to provide an estimate of the 

difference between the binding affinities of the two different conformations (Figure S13). 

The co-crystallized FXR_23 revealed that the isoxazole moiety does not occupy the same 

area as in the known structures, rendering it difficult to predict an accurate binding pose. 

 

3.2.2 Compounds with unknown chemotypes  

Spirocyclic 

The spiros group was among those with no native ligands of the same chemotype available 

and thus their binding mode was completely unknown. In order to choose in which crystal 

structure they should be docked, we first calculated their shape similarity with some 

representative native ligands from each chemical type using the SHAPE tool. SHAPE 

performs a 3D scan of the molecules in order to identify the maximum overlapping volume. 

Although the results generated by SHAPE indicated that the native ligand of 1OT7 displays 



32 

the highest shape similarity with all three spiros molecules (see Table S7), they had little 

chemical similarity. As a result, 3OOM was used instead of 1OT7, which was the second 

structure according to SHAPE results with high shape similarity and better chemical 

similarity. 

Compounds FXR_10 and FXR_12 belong to the free energy predictions subset. Because 

FXR_74, also a spirocyclic compound, was used as the reference in the free energy 

perturbation calculations, we used this compound for the prediction of the binding mode of 

the spiros group. Therefore, the FXR_74 predicted binding mode was also used for FXR_10, 

FXR_11 and FXR_12 predictions. SP Glide docking of FXR_74 in 3OMM indicated two 

possible binding modes, with the bromo phenyl ring pointing to two different directions 

(Figure 9). In order to identify the most favorable conformation, three poses of FXR_74 from 

SP docking as well as two additional poses generated from an IFD calculation in 3OMM 

structure were used as input in the metadynamics simulations. The calculations indicated the 

upward pose as more stable, to which FXR_10, FXR_11 and FXR_12 compounds were 

aligned. 

 

Figure 9. The FXR_74 poses subjected to metadynamics calculations for the determination 

of the most stable one. The three poses from SP docking are shown in yellow and the two 

poses from IFD are shown in purple. Inside the red cycles, the two possible binding modes 

are shown. 
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Additionally, cross-docking calculations were performed for FXR_12. Comparison of Glide 

Score values for FXR_12 in each protein structure suggested that the pose generated in 3FXV 

crystal structure was the most favorable (Glide Score of -11 kcal/mol). Subsequently, 

compounds FXR_10 and FXR_11 were aligned to the docked 3FXV pose of FXR_12. Both 

binding modes for each of the three compounds were submitted in Stage 1 of the challenge. 

The results showed that the pose in 3FXV structure (which was submitted as the first ranked 

pose), was more accurate than the pose in 3OMM attesting that the cross docking has a 

higher possibility to generate a pose close to the crystal one. Nevertheless, the RMSD value 

of this pose was greater than 2 Å (Figure 10). 

 

 

Figure 10. Results for FXR_10 for the two submitted poses. A: RMSD=2.14 Å. B: 

RMSD=4.43 Å (submitted pose (green) overlaid with the crystal structure (orange)). 

  

Miscellaneous 

From the miscellaneous group, compounds FXR_1, FXR_2, FXR_3 and FXR_18 did not 

have any chemical similarity with the available FXR native ligands.  

Initially, SHAPE was used to identify possible shape similarities between the native ligands 

and FXR_1. However, no structure had high similarity with FXR_1 and therefore cross 

docking was performed against all 28 proteins, followed by visual inspection. Prediction of 

FXR_1 binding mode was challenging as docking across the available crystal structures 

generated diverse binding poses of the compound. The docking pose generated by using 
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3OKH crystal structure overlapped with the native ligand better than the other cross docking 

results. The RMSD value of our submitted pose was 5.99 Å and the reported RMSD values of 

the participants were ≥4 Å, confirming the difficulty in predicting its binding pose. For 

FXR_2, calculation of its shape similarity with certain native ligands, indicated ligands from 

1OSH and 3OKH crystal structures as the most similar. After visual comparison of FXR_2 

structure with 1OSH and 3OKH ligands, we found that FXR_2 has a high scaffold similarity 

with 3OKH benzimidazole ligand, even though they belong to entirely different chemical 

series. Thus, FXR_2 was docked in 3OKH crystal structure and subsequently aligned to 

3OKH native ligand. After the alignment, the protein residues close to FXR_2 were 

energetically minimized. Unfortunately, this procedure was not successful, since the 

submitted pose had an RMSD value of 7.47 Å (Figure S14). None of the participants 

submitted an accurate prediction of this compound pose, indicating its intricate nature. 

FXR_3 compound was also cross-docked in all FXR crystal structures and the resulting poses 

were examined for their interactions similarity with respect to the native ligand. According to 

Glide Score, 3RUT crystal structure was the most proper for FXR_3 docking with a Glide 

Score of -11.1 kcal/mol, while the interaction fingerprints Tanimoto similarity indicated the 

3FLI structure as the most suitable. The interactions similarity of FXR_3 ligand with 3FLI 

protein structure with respect to the native ligand’s interactions was 0.731 using the Tanimoto 

metric. Both poses were submitted, but they significantly diverged from the co-crystallized 

one (Figure S15). 

FXR_18 was docked into 3OKH crystal structure, based on shape similarity results using the 

SHAPE tool of Schrödinger. After docking, FXR_18 was aligned to 3OKH native ligand, 

followed by energy minimization of the protein residues around the ligands. Next, we defined 

the position of the acetamide substituent in the benzene ring because it can adopt two 

equivalent positions (Figure S16 left). Therefore, binding pose metadynamics calculations 

were carried out to identify the most stable of the two orientations. The results identified the 

downward pose as the most stable, with a CompScore of -3.378 versus -0.410 for the upward 

conformation. None of these two pose predictions was accurate, with an RMSD value of 8.42 

Å. 
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Sulfonamides 

The cross docking results for the FXR_15, FXR_16 and FXR_17 sulfonamide agonists were 

evaluated by the interaction fingerprints tools and visual inspection. The 3FLI protein was 

found to generate better docking results for all three ligands by both the generated 

conformation of the ligand and the interactions similarity (0.59, 0.53 and 0.61, respectively). 

In order to estimate the conformations stability, the geometry of the generated poses was 

optimized in Jaguar. The resulting poses were re-docked first with SP Glide and then with XP 

Glide. The pose predictions for FXR_16 and FXR_17 are presented in Figure 11. 

 

 

Figure 11: FXR_16 (left) (RMSD=1.57 Å) and FXR_17 (right) (RMSD=1.63 Å) crystal 

structure (orange) superimposed with the pose prediction (green) in 3FLI.  

 

FXR_15 proved to be a challenging ligand to predict using our methodology (RMSD=5.66 Å, 

Figure S17), and the RMSD values for the majority of the submitted poses were greater than 

4 Å. 

All compound predictions together with their respective RMSDs after comparison with the 

released crystal structure are presented in Figure S18. 

According to D3R evaluation results, our predictions ranked #1st out of 49 completed 

submissions, with a median RMSD value of 0.99 Å. These results validate our methodology, 

especially for compounds with known chemotype. 
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3.3 Free energy predictions 

The relative binding free energies of the two subsets of ligands were estimated using FEP 

calculations. The first subset consists of 15 sulfonamides and the second of 18 spiro 

compounds (Tables S4 and S5). No experimental data existed for the compounds binding 

modes. Thus, in Stage 1 of the challenge, we performed FEP calculations for the compounds 

using their predicted binding mode as described above. By the end of Stage 1, among crystal 

structures released by D3R for the pose predictions part, three structures comprised ligands 

from the two series (FXR_10, FXR_12 and FXR_17). Participants repeated the free energy 

predictions for Stage 2, taking into account the real binding poses of these compounds. The 

prediction of the spiros binding modes has been already described in Sections 2.6.3 and 3.2.2. 

A primary assumption of FEP is that all ligands in the series retain the same binding mode. 

Therefore, before conducting FEP calculations, we aligned all ligands to the reference one. In 

order to identify the reference ligand, we calculated the interactions similarity of all spiros 

compounds with the native ligand of 3OMM crystal structure. 3OMM was the structure 

chosen for the docking of the spiros compounds according to shape similarity analysis. The 

results from the interaction fingerprints Tanimoto similarity are presented in Table S8. Based 

on that, compound FXR_79 has the higher interactions similarity with the native ligand. 

However, it is not representative of the spiros group, since it bears a thiophene ring attached 

to the spiro ring instead of a benzene ring as in the majority of the compounds. At the same 

time, FXR_84, FXR_85 and FXR_81 (Table S8) were also rejected due to steric clashes with 

the protein. Eventually, FXR_74 was chosen as the reference compound, which meets both 

criteria of high interactions similarity and representatively of the spiros group. Consequently, 

all spiros compounds were aligned to FXR_74 with their maximum common substructure 

(Figure 12). It should be mentioned here that the interactions similarity with the native 

3OMM ligand was calculated only for the spiros compounds, which have a carboxyl group.  
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Figure 12. Before (left) and after (right) flexible ligand alignment of the spiros compounds to 

the reference compound. 

 

To choose a reference ligand for the sulfonamides group, the interaction fingerprints tool was 

applied in the 3OOF structure (Table S9). 

FXR_91 had the highest interactions similarity with the native ligand. Moreover, its structure 

contains a core present in most sulfonamide compounds but FXR_93. However, FXR_17 has 

the amide group in a similar position with the native ligand, reproducing the hydrogen bond 

group with Ser336 and it can be used as a scaffold for reproducing the other molecules of the 

set. Also, its binding mode was released in Stage 2. As such, it was selected as the 

representative compound of the set and the rest of the compounds were aligned to it.  

The compound sets were then inserted into the FEP Mapper tool of FEP+, which generated 

the FEP Map of all connections between the two subsets (Figures S19 and S20). 

 

3.3.1 Free energy perturbation results 

FEP calculations were run using the predicted binding modes in Stage 1 and were repeated 

using the real binding modes of spiros and sulfonamides that were disclosed in Stage 2. In 

Stage 2 compounds FXR_38, FXR_73, FXR_75 and FXR_79, which bear a thiophene ring, 

were aligned to FXR_10 crystal pose and the rest compounds, which have a benzene ring 

attached to the spiro core, were aligned to FXR_12. Because FXR_12 demonstrated double 

occupancy (Figure S21A), with the ortho chloro substitution binding in two equivalent 
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positions, all compounds with substitutions in this ring were considered in both binding 

modes. As seen in Figure S21B, for compound FXR_85, which has an ortho substituent as 

well, both poses were inserted in the FEP map. Examination of the trajectories generated by 

the FEP calculations showed that the compounds retain their separate binding modes without 

any interconversion, but both poses had about the same binding free energy. For this reason, 

equation (3) was used to calculate the ΔΔG. FXR_17 did not display any double occupancy, 

hence the rest of the sulfonamides were simply aligned to it. 

The predicted free energies in Stages 1 and 2 as well as the experimental values are presented 

in Tables 4 (for the spiros) and 5 (for the sulfonamides). 

In order to assess the correlation between the experimental and the predicted values, the 

following formula was used: 

ΔG=RTln(IC50)           (4) 

where R is the gas constant, T is the temperature and IC50 is the half-maximal inhibitory 

concentration of the ligand provided by D3R. It should be noted that ΔΔG values predicted 

by free energy perturbation calculations are directly comparable to Ki values, and comparison 

with IC50 values is only possible if the mechanism of inhibition and the substrate 

concentration are known using the Cheng-Prusoff equations [71], according to which IC50 

values approximate Ki when the substrate used in the assay is much lower than Km.   
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Table 4. Predicted and experimental relative binding free energies (ΔΔG) for spiros analogs 

in kcal/mol. 

#Ligand 
ID 

Predicted 
ΔΔG 

(1st stage) 

ΔΔG 
Uncertainty 

Predicted 
ΔΔG 

(2nd stage) 

ΔΔG 
Uncertainty 

Experime
ntal ΔΔG 

IC50 
(µM) 

FXR_10 0 0.4 0 0.4 0 5.64 
FXR_12 -1.51 1.73 -3.58 1.1 -2.73 0.058 
FXR_38 1.53 0.99 0.5 0.45 1.71 100 
FXR_41 -1.84 1.29 -2.08 1.08 1.71 100 
FXR_73 1.24 1.6 0.69 0.5 0.41 11.2 
FXR_74 -1.93 1.27 -3.69 1.22 -1.28 0.655 
FXR_75 1.75 1.31 2.94 0.45 1.71 100 
FXR_76 2.41 1.6 -0.41 0.88 1.19 41.8 
FXR_77 0.18 1.68 -4.34 1.08 -1.86 0.25 
FXR_78 1.74 1.61 -3.66 1.22 -3.16 0.0283 
FXR_79 3.62 1.6 0.31 0.5 -0.18 4.15 
FXR_81 1.21 1.54 -4.03 1.09 -0.44 2.69 
FXR_82 0.35 1.59 -3.05 1.22 -2.05 0.18 
FXR_83 -2.59 1.38 -4.61 1.12 -1.69 0.33 
FXR_84 -0.07 1.7 -1.65 1.01 -0.13 4.54 
FXR_85 -0.02 1.16 -2.79 0.99 -1.75 0.297 
FXR_88 -2.23 1.27 -4.39 1 -1.40 0.54 
FXR_89 1.15 1.64 -0.14 1.34 -1.21 0.735 

 

Table 5. Predicted and experimental relative binding free energies (ΔΔG) for sulfonamide 

analogs in kcal/mol.  

#Ligand 
ID 

Predicted 
ΔΔG 
(1st 

stage) 

ΔΔG 
Uncertainty 

Predicted 
ΔΔG 

(2nd stage) 

ΔΔG 
Uncertainty 

Experimental 
ΔΔG 

IC50 
(µM) 

FXR_17 0 0.4 0 0.4 0.00 0.785 
FXR_45 -1.05 0.54 0.01 0.43 2.15 28.9 
FXR_46 -0.5 0.67 3.41 0.67 2.61 62.4 
FXR_47 2.99 1 4.12 1.41 1.96 21 
FXR_48 0.72 0.62 1.19 1.05 2.89 100 
FXR_49 -0.06 0.61 3.34 0.64 2.89 100 
FXR_91 4.35 0.75 5.59 1.1 2.16 29.6 
FXR_93 5.55 0.75 5.2 1.41 2.44 46.7 
FXR_95 -0.4 0.64 3.17 0.51 2.21 32.2 
FXR_96 -0.63 0.54 1.23 0.46 2.57 58.9 
FXR_98 -2.17 0.55 2.83 0.6 1.68 13.1 
FXR_99 2.35 0.64 4.36 0.58 2.89 100 

FXR_100 -0.05 0.64 3.37 1.01 1.90 19.1 
FXR_101 5.5 0.8 2.16 1.05 2.12 27.6 
FXR_102 5.21 0.75 2.21 1.15 2.16 29.2 
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The correlation diagrams for Stage 1 and 2 are presented in Figure 14. In the spiros group 

(Figure 14), this methodology predicted with 85% success (11/13) compounds that have a 

better binding affinity than the parent compound, as only 2 out of 13 compounds were 

predicted with the wrong trend. The improvement in R2 is significant for the spiros group 

after using the actual crystal structure. For the sulfonamides set though, there is no correlation 

between the predicted and the experimental values (Figure 14), because of the narrow range 

of experimental binding free energies, which is within the error of the FEP method (~1 

kcal/mol). Encouragingly, all compounds were correctly identified as less active than the 

reference, which means that in a lead optimization project, these compounds would not have 

been proposed for synthesis, thus saving valuable resources.  
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Figure 13. Correlation diagrams of the predicted and the experimental free energies for 

spiros (A and B) and sulfonamides (C and D) compounds in both stages of the challenge. The 

y=x line is also shown in red. The point (0, 0), which corresponds to the reference compound, 

is shown in green square box inside a circle. 

 

 

3.3.2 Monitoring important interactions  

During FEP simulations, crucial interactions were monitored. For example, the two of the 

most potent compounds, FXR_12 and FXR_78 (IC50 = 0.058 µΜ, and 0.0283 µΜ, 

respectively) have an ortho chloro substituent, which can form an additional halogen bond 

with the residue Leu291 as shown in Figure 15. This extra interaction must be the driving 

force for the increased potency of FXR_12. 

 

 

 

Figure 14. The halogen bond between FXR_12 and Leu291 conserved during the FEP MD 

simulations.  
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Also, protein-ligand interactions were investigated using the analysis diagrams produced by 

FEP+ as seen in an example in Figure 16. Compound FXR_98 has an IC50=13.1 µM 

compared to IC50=100 µΜ for FXR_49. Thus, as expected, compound FXR_98 displays 

more interactions with the protein during the FEP simulation than FXR_49 (Figure 16A). The 

occupancy ratio of each interaction during the simulation was also reviewed (Figure 16B). 

 

 

Figure 15. Analysis diagrams produced by the FEP+ simulation. A. Comparison graph of the 

interactions of ligands FXR_98 and FXR_49 with the protein. B. 2D interactions diagrams 

and their occupancy ratio during the simulations. 

 

Moreover, we monitored the distribution of the torsional states of the dihedrals of each 

compound in the complex and in the solvent (Figure 17). This conformational analysis is 

useful for indicating any unreasonable conformation of the molecules. 
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Figure 16. Conformational analysis diagrams for FXR_98 and FXR_49. Rotatable bonds in 

each ligand are represented using a color bar. For each rotatable bond, a representative 

dihedral angle is monitored during the simulation time for both complex and solvent legs. 

The distributions of these conformations are then plotted for each bond. Potential energy 

around each bond overlays the histograms with the blue curve and corresponding labels on 

the Y-axis. 

 

 

3.3.3 Convergence of the simulations 

Apart from the trajectory analysis, an important consideration is the results convergence. To 

ensure the free energy convergence, we monitored the cumulative free energy plots over 

simulation time as explained in the "Error estimation and convergence section (an example is 

shown in Figure 17, and all convergence plots are provided in the SI, Figure S22-S23). 
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Figure 17. The total free energy differences between the ligands FXR_17 and FXR_100 (ΔG 

in kcal/mol) in solvent and complex legs are plotted as a function of time. Three plots for 

each leg show the accumulated data during different time window schemes: forward (A and 

D), reverse (B and E), sliding (C and F) window. The tables report the associated bootstrap 

and analytical errors estimates from corresponding simulation legs.  
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4. Conclusions 

In the current study, we describe our methodology and results for the prediction of the 

binding poses of 35 FXR agonists and the binding affinities of two subsets of ligands in the 

D3R Grand Challenge 2 competition. For the pose predictions, we implemented a variety of 

techniques after categorizing the dataset ligands into a) ligands with known chemotypes and 

b) ligands with unknown chemotypes, based on the available crystal structures from the PDB. 

For ligands with known chemotypes, we initially identified a suitable protein crystal structure 

for docking, and then docked the ligands to this structure, followed by alignment to the native 

ligand and minimization. For cases where two or more poses were possible, we performed 

WaterMap, binding pose metadynamics and FEP calculations to decide the most 

energetically-favorable pose. For ligands with no crystallographic precedent in the PDB and 

unknown chemotypes, the choice of crystal structure, to which each ligand should be docked, 

was very important. For this purpose, we performed shape similarity calculations between the 

dataset compounds and the native ligands, cross docking in all available crystal structures and 

interactions similarity calculations. After this step, the ligand was docked to the structure of 

choice.  

The pose predictions for the ligands with known chemotypes were quite accurate with a mean 

RMSD value of 1.16 Å. Specifically, in the benzimidazole group, alignment to the native 

benzimidazole ligands, yielded a mean RMSD value of 0.82 Å for all benzimidazoles. This 

validates our hypothesis that minor ligand modifications do not alter the binding pose. 

Admittedly, the large number of available benzimidazole ligands in the PDB testifies their 

conserved binding mode and only major alterations would have been expected to lead to a 

different pose. Moreover, the majority of the participants predicted benzimidazole binding 

modes accurately as well. From the miscellaneous group, two compounds possessed known 

scaffolds and were aligned to the chemically similar native ligands. This methodology was 

not successful for FXR_34 (steroid core) compound, because the steroid moiety binds in a 

reverse manner compared to other known steroid FXR agonists. This binding mode was 

unexpected, since all bile acids, which are believed to be the physiological FXR ligands, bind 

in the same way. However, binding pose metadynamics successfully distinguished the 

position of the isophtalate ring, which is more favorable for the binding of the extended side 

chain. 
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The two isoxazole compounds, FXR_23 and FXR_33, have a known chemotype. However, 

the procedure that we followed deviated from the alignment to a native ligand with the same 

isoxazole scaffold. This decision was based on the chemical diversity of these two 

compounds from the isoxazole native ligands available in the PDB. Thus, the significant 

alterations in the structure of these two compounds were assumed to lead to a different 

binding mode, and therefore a different methodology was used, which resembles the 

workflow constructed for the ligands with unknown chemotypes. The assumption of the 

different binding mode proved to be correct, but our predicted poses could not reproduce the 

crystallographic ones. This result primarily reflects the uncertainty of pose predictions when 

the pocket is wide and the ligand bears a large structural modification with respect to a 

crystallized native ligand.  

For compounds with unknown chemotypes and specifically for the spiros group, we 

performed both shape similarity calculations and cross docking, with the second giving better 

results. Nevertheless, none of these approaches correctly predicted these compounds binding 

mode, yielding RMSD values higher than 2 Å. This was not the case for sulfonamides, where 

cross docking results were evaluated by the interaction fingerprints tools and visual 

inspection, and for which the predictions captured poses close to their co-crystallized 

structure. Finally, for the miscellaneous compounds with unknown chemotypes, we could not 

predict their binding mode. This result is partly due to their low molecular weight, which 

enables them to adopt different configurations in the wide FXR binding pocket. Overall, 

based on our results, pose prediction is improved when the co-crystalized native ligand has a 

quantitative shape similarity with the ligand of interest. Assessing the similarity between the 

native and novel ligands interaction patterns with the protein binding site and preserving 

those interactions is another factor that leads to improved results. 

For free energy predictions, we used the alchemical Free Energy Perturbation framework that 

predicts relative free energy of binding affinities within a congeneric compound set. 

Important considerations when using this methodology can be summarized in the following. 

The starting protein structure has to be of sufficiently high quality and no major 

conformational changes should be expected during the simulations, as large-scale protein 

movements cannot be sampled within the timeframe of FEP calculations. Sufficiently long 

simulations have to be performed and/or enhanced sampling techniques should be applied in 

order to ensure convergence and overcome conformational ligand barriers. The charge of a 

ligand cannot change during an alchemical perturbation, and all ligands have to belong to the 
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same congeneric series; perturbations should not be large (normally up to 10 heavy atoms) to 

allow for configurational overlap between neighboring lambda windows. Examination and 

choice of buried water molecules to be included in the starting conformation of the 

calculation is important as these are not expected to exchange with the bulk during the FEP 

calculation. Before staring a FEP calculation, all ligands need to be aligned to a reference 

ligand to ensure a conserved binding mode. In case double occupancy is a possibility due to a 

rotation of a substituent group, both binding modes should be considered in the calculations. 

The convergence of the simulations needs to be addressed using closed cycles to monitor 

hysteresis and plotting the free energy differences as a function of time. Care should be taken 

to compare FEP results with appropriate experimental data. The ΔΔG values predicted by 

free energy perturbation calculations are directly comparable to Ki values. Comparison with 

IC50 values is only possible if the mechanism of inhibition and the substrate concentration are 

known; then the relationship between Ki and IC50 should be calculated using the Cheng-

Prusoff equations [71]. It should be noted that IC50 values approximate Ki when the substrate 

used in the assay is much lower than Km. Finally, the error of the method has been reported to 

be ~1 kcal/mol, thus a simulation-experimental correlation should not be expected for a 

narrow range (1-3 kcal/mol) of experimental data. 

In this work, binding affinity predictions for the spiros set (Set 2) were successful with 85% 

success in identifying true positive compounds, i.e. compounds with better binding affinity 

than the reference (parent) compound. Moreover, the release of the crystal structure in the 

second stage, significantly improved the correlation between experimental and calculated 

values, which is consistent with the fact that FEP+ has high predictive ability, given a high 

quality initial structure. In the sulfonamides subset, no correlation was observed between 

experimental and predicted data. This is attributed to the narrow range of the experimental 

values (1 kcal/mol), which is below the method’s error (~between 1-2 kcal/mol), which 

indicates that such an experimental set is not suitable for performing alchemical free energy 

calculations. It is encouraging, though, that FEP correctly identified all compounds in this 

subset were true negatives (here defined as compounds that had worse binding affinity than 

the parent compound) and therefore none of these would have been proposed for synthesis in 

a lead optimization project.  

Concluding, computational methods in drug design have shown significant advances over the 

years, and future developments are expected to lead to more cost- and time- efficient 
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strategies for the expensive stages in the drug design pipeline such as the lead optimization 

phase. 
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